Title: | Power Analysis for Meta-Analysis |
---|---|
Description: | A simple and effective tool for computing and visualizing statistical power for meta-analysis, including power analysis of main effects (Jackson & Turner, 2017)<doi:10.1002/jrsm.1240>, test of homogeneity (Pigott, 2012)<doi:10.1007/978-1-4614-2278-5>, subgroup analysis, and categorical moderator analysis (Hedges & Pigott, 2004)<doi:10.1037/1082-989X.9.4.426>. |
Authors: | Jason Griffin [aut, cre] |
Maintainer: | Jason Griffin <[email protected]> |
License: | GPL-2 |
Version: | 0.2.2 |
Built: | 2025-02-28 06:03:38 UTC |
Source: | https://github.com/jasonwgriffin/metapower |
Compute statistical power for the Test of Homogeneity for meta-analysis under both fixed- and random-effects models.
homogen_power( effect_size, study_size, k, i2, es_type, p = 0.05, con_table = NULL )
homogen_power( effect_size, study_size, k, i2, es_type, p = 0.05, con_table = NULL )
effect_size |
Numerical value of effect size. |
||||||||||
study_size |
Numerical value for number number of participants (per study). |
||||||||||
k |
Numerical value for total number of studies. |
||||||||||
i2 |
Numerical value for Heterogeneity estimate (i^2). |
||||||||||
es_type |
'Character reflecting effect size metric: 'r', 'd', or 'or'. |
||||||||||
p |
Numerical value for significance level (Type I error probability). |
||||||||||
con_table |
(Optional) Numerical values for 2x2 contingency table as a vector in the following format: c(a,b,c,d).
|
Estimated Power to detect differences in homogeneity of effect sizes for fixed- and random-effects models
Borenstein, M., Hedges, L. V., Higgins, J. P. T. and Rothstein, H. R.(2009). Introduction to meta-analysis, Chichester, UK: Wiley.
Hedges, L., Pigott, T. (2004). The Power of Statistical Tests for Moderators in Meta-Analysis, Psychological Methods, 9(4), 426-445. doi: https://dx.doi.org/10.1037/1082-989x.9.4.426
Pigott, T. (2012). Advances in Meta-Analysis. doi: https://dx.doi.org/10.1007/978-1-4614-2278-5
https://jason-griffin.shinyapps.io/shiny_metapower/
homogen_power(effect_size = .5, study_size = 10, k = 10, i2 = .50, es_type = "d")
homogen_power(effect_size = .5, study_size = 10, k = 10, i2 = .50, es_type = "d")
Computes statistical power for categorical moderator analysis under fixed and random effects models.
mod_power( n_groups, effect_sizes, study_size, k, i2, es_type, p = 0.05, con_table = NULL )
mod_power( n_groups, effect_sizes, study_size, k, i2, es_type, p = 0.05, con_table = NULL )
n_groups |
Numerical value for the levels of a categorical variable. |
||||||||||
effect_sizes |
Numerical values for effect sizes of for each group. |
||||||||||
study_size |
Numerical value for number of participants (per study). |
||||||||||
k |
Numerical value for total number of studies. |
||||||||||
i2 |
Numerical value for Heterogeneity estimate (i^2). |
||||||||||
es_type |
Character reflecting effect size metric: 'r', 'd', or 'or'. |
||||||||||
p |
Numerical value for significance level (Type I error probability). |
||||||||||
con_table |
(Optional) List of numerical values for 2x2 contingency tables as a vector in the following format: c(a,b,c,d). These should be specified for each group(i.e., n_groups).
|
Estimated Power estimates for moderator analysis under fixed- and random-effects models
https://jason-griffin.shinyapps.io/shiny_metapower/
mod_power(n_groups = 2, effect_sizes = c(.1,.5), study_size = 20, k = 10, i2 = .50, es_type = "d") mod_power(n_groups = 2, con_table = list(g1 = c(6,5,4,5), g2 = c(8,5,2,5)), study_size = 40, k = 20, i2 = .50, es_type = "or")
mod_power(n_groups = 2, effect_sizes = c(.1,.5), study_size = 20, k = 10, i2 = .50, es_type = "d") mod_power(n_groups = 2, con_table = list(g1 = c(6,5,4,5), g2 = c(8,5,2,5)), study_size = 40, k = 20, i2 = .50, es_type = "or")
Computes statistical power for summary effect sizes in meta-analysis.
mpower( effect_size, study_size, k, i2, es_type, test_type = "two-tailed", p = 0.05, con_table = NULL )
mpower( effect_size, study_size, k, i2, es_type, test_type = "two-tailed", p = 0.05, con_table = NULL )
effect_size |
Numerical value of effect size. |
||||||||||
study_size |
Numerical value for number number of participants (per study). |
||||||||||
k |
Numerical value for total number of studies. |
||||||||||
i2 |
Numerical value for Heterogeneity estimate (i^2). |
||||||||||
es_type |
Character reflecting effect size metric: 'r', 'd', or 'or'. |
||||||||||
test_type |
Character value reflecting test type: ("two-tailed" or "one-tailed"). |
||||||||||
p |
Numerical value for significance level (Type I error probability). |
||||||||||
con_table |
(Optional) Numerical values for 2x2 contingency table as a vector in the following format: c(a,b,c,d).
|
Estimated Power
Borenstein, M., Hedges, L. V., Higgins, J. P. T. and Rothstein, H. R.(2009). Introduction to meta-analysis, Chichester, UK: Wiley.
Hedges, L., Pigott, T. (2004). The Power of Statistical Tests for Moderators in Meta-Analysis, Psychological Methods, 9(4), 426-445 doi: https://dx.doi.org/10.1037/1082-989x.9.4.426
Pigott, T. (2012). Advances in Meta-Analysis. doi: https://dx.doi.org/10.1007/978-1-4614-2278-5
Jackson, D., Turner, R. (2017). Power analysis for random-effects meta-analysis, Research Synthesis Methods, 8(3), 290-302 doi: https://dx.doi.org/10.1002/jrsm.1240
https://jason-griffin.shinyapps.io/shiny_metapower/
mpower(effect_size = .2, study_size = 10, k = 10, i2 = .5, es_type = "d")
mpower(effect_size = .2, study_size = 10, k = 10, i2 = .5, es_type = "d")
Plots power curves for the test of homogeneity for different levels of within-study variation for fixed effects models. For random-effects models, power curves are plotted for various levels of heterogeneity.
plot_homogen_power(obj)
plot_homogen_power(obj)
obj |
should be an "homogen_power" object |
Power curve plot for the user specified input parameters
Plots power curves for categorical moderator in meta-analysis
plot_mod_power(obj)
plot_mod_power(obj)
obj |
This should be an 'mod_power' object |
Power curves for moderator analysis under fixed and random effects models
Plots power curves for fixed effects models with various effect size magnitudes. Also plots power curves for various levels of heterogeneity (e.g., i2 = 75
plot_mpower(obj)
plot_mpower(obj)
obj |
This should be an "mpower" object |
Power curve plot for the user specified input parameters
Plots power curves to detect subgroup differences in meta-analysis.
plot_subgroup_power(obj)
plot_subgroup_power(obj)
obj |
This should be an 'subgroup_power' object |
Power curves to detect subgroup differences for fixed and random effects models
Computes statistical power for different subgroups under fixed and random effects models.
subgroup_power( n_groups, effect_sizes, study_size, k, i2 = 0.5, es_type, p = 0.05, con_table = NULL )
subgroup_power( n_groups, effect_sizes, study_size, k, i2 = 0.5, es_type, p = 0.05, con_table = NULL )
n_groups |
Numerical value for the number of subgroups. |
||||||||||
effect_sizes |
Numerical values for effect sizes of for each group. |
||||||||||
study_size |
Numerical value for number of participants (per study). |
||||||||||
k |
Numerical value for total number of studies. |
||||||||||
i2 |
Numerical value for Heterogeneity estimate (i^2). |
||||||||||
es_type |
Character reflecting effect size metric: 'r', 'd', or 'or'. |
||||||||||
p |
Numerical value for significance level (Type I error probability). |
||||||||||
con_table |
(Optional) List of numerical values for 2x2 contingency tables as a vector in the following format: c(a,b,c,d). These should be specified for each subgroup (i.e., n_groups).
|
Estimated Power estimates for subgroup differences under fixed- and random-effects models
https://jason-griffin.shinyapps.io/shiny_metapower/
subgroup_power(n_groups = 2, effect_sizes = c(.1,.5), study_size = 20, k = 10, i2 = .5, es_type = "d") subgroup_power(n_groups = 2, con_table = list(g1 = c(6,5,4,5), g2 = c(8,5,2,5)), study_size = 40, k = 20, i2 = .5, es_type = "or")
subgroup_power(n_groups = 2, effect_sizes = c(.1,.5), study_size = 20, k = 10, i2 = .5, es_type = "d") subgroup_power(n_groups = 2, con_table = list(g1 = c(6,5,4,5), g2 = c(8,5,2,5)), study_size = 40, k = 20, i2 = .5, es_type = "or")